Photo-responsive properties of poly(NIPAM-co-AAc) microgel particles with absorbed, hydrophobically modified organic salts.

نویسندگان

  • Kaizhong Fan
  • Melanie Bradley
  • Brian Vincent
چکیده

The absorption of two hydrophobically modified organic salts (HMOSs), containing azobenzene units, into poly(N-isopropylacrylamide-co-acrylic acid) microgel particles has been studied at pH 8 and 20 °C. These dispersions were then irradiated with UV light (wavelength 365 nm) for 10 min to observe the effect on the microgel particle properties, such as the adsorbed amount of the HMOS, the particle size, and the electrophoretic mobility. We show that irradiation of these dispersions with UV light can lead to induced, partial desorption of the HMOS molecules, with concomitant changes in the size and electrophoretic mobility of the microgel particles. This is due to a conformational switch (trans-form to cis-form) in the HMOS molecules, which reduces the strength of the hydrophobic interaction between the HMOS molecules and the isopropyl moieties within the microgel network. Moreover, the original absorbed amounts, size, and electrophoretic mobility values can be largely restored after storage in the dark for extended periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo.

Stimulus-responsive nanogels have potential as carriers for drugs targeting the skin. It is important to estimate the biocompatibility of such materials with the skin since they are directly in contact upon application and may induce irritation or inflammation. In the current work, blank (drug-free) polyN-isopropylacrylamide (polyNIPAM), poly(NIPAM copolymerized butyl acrylate) [poly(NIPAM-co-B...

متن کامل

Poly (N-Isopropylacrylamide) Microgel-Based Etalons for Optical Sensing

Poly (N-isopropylacrylamide) (pNIPAm) is one of the most completely studied “smart” polymers due to its unique reversible thermoresponsivity.That is, when pNIPAm in water is heated > ~31°C, it transits from a random coil to a globule conformation; this transition is reversed when T < ~31°C. This conformational change is accompanied by water exchange process. When pNIPAm undergoes the coil to gl...

متن کامل

Density profiles of temperature-sensitive microgel particles.

We have performed small angle neutron scattering measurements (SANS) on dilute aqueous dispersions of polymer microgel particles as a function of temperature, T . The microgel particles are spherical crosslinked assemblies of a loose gel network of a poly-N-isopropylacrylamide (NIPAM) polymer. When the temperature is raised beyond a critical temperature, T(lc) approximately 32 degrees C , the p...

متن کامل

The Effect of Co-Monomer Content on the Swelling/Shrinking and Mechanical Behaviour of Individually Adsorbed PNIPAM Microgel Particles

The swelling/deswelling behaviour of microgel particles in the bulk and at the surface was studied and correlated to their mechanical properties. We focused on two kinds of particles: pure PNIPAM and PNIPAM-co-AAc particles. It was shown that the two step volume phase transition found for PNIPAM-co-AAc particles in the bulk disappears after the adsorption at the surface and only a one step tran...

متن کامل

Inner structure of adsorbed ionic microgel particles.

Microgel particles of cross-linked poly(NIPAM-co-acrylic acid) with different acrylic acid contents are investigated in solution and in the adsorbed state. As a substrate, silicon with a poly(allylamine hydrochloride) (PAH) coating is used. The temperature dependence of the deswelling of the microgel particles was probed with atomic force microscopy (AFM). The inner structure of the adsorbed mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 368 1  شماره 

صفحات  -

تاریخ انتشار 2012